

MQDA: Model and Quality-Driven
Assessment of Software Artifacts

Consulting
Services White Paper

© Exodus Software Services, 2013 | All Rights Reserved | Email: Solutions@ExodusSoftServices.com

Exodus White Paper | Model and Quality-Driven Assessment of Software Artifacts
Email: Solutions@ExodusSoftServices.com

2

© 2013 Exodus Consulting Services (ExodusSoftServices.com)—a.k.a. “Exodus”.

All rights reserved. No part of this work covered by the copyright hereon may be

reproduced or used in any form or by any means—graphical, electronic, or

mechanical, including photocopying, recording, taping, or information storage and

retrieval systems—without written permission of the owners of:

Exodus Consulting Services (ExodusSoftServices.com). Jacksonville, FL.

Printed in the United States of America

Document Identifier: Exodus White Paper 03022013

LIMITED WARRANTY

Exodus Consulting Services (ExodusSoftServices.com) expressly disclaims any

warranty for the information presented herein. This material is presented “as is”

without warranty of any kind, either expressed or implied, including—without

limitation—the implied warranties of merchantability or fitness for a particular

purpose. The entire risk arising from the use of this material remains with you.

Exodus’ entire liability and your exclusive remedy shall not exceed the price paid for

this material. In no event shall Exodus or its suppliers be liable for any damages

whatsoever (including—without limitation—damages for loss of business profit,

business interruption, loss of business information, or any other pecuniary loss)

arising from the use or inability to use this information, even if Exodus has been

advised of the possibility of such damages. Because some states/jurisdictions do not

allow the exclusion or limitation of liability for consequential or incidental damages,

the above limitation may not apply to you.

U.S. GOVERNMENT RESTRICTED RIGHTS

This material is provided with RESTRICTED RIGHTS. Use, duplication, or disclosure by

the Government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of The

Right in Technical Data and Computer Software clause at DFARS 252.227-7013 or

subparagraphs (c)(1) and (2) of the Commercial Computer Software—Restricted

Rights 48 CFR 52.227-19, as applicable. The manufacturer is Exodus Consulting

Services (ExodusSoftServices.com). Jacksonville, FL.

Exodus White Paper | Model and Quality-Driven Assessment of Software Artifacts
Email: Solutions@ExodusSoftServices.com

3

Executive Summary

In this White Paper we present MQDA, Exodus’ Model and Quality-Driven approach

for the assessment of software artifacts. We discuss evidence-based results that

support the adoption of early assessment practices. The elements that constitute

MQDA and a comparison of our approach with others that are well-known are

presented. We also discuss how MQDA can be tailored to your organization. Finally,

cited references are listed, which readers can use to further their knowledge and

understanding of fundamental Software Engineering concepts related to the

assessment of software products and processes.

Exodus White Paper | Model and Quality-Driven Assessment of Software Artifacts
Email: Solutions@ExodusSoftServices.com

4

Motivation and Background

“What we have learned about fighting defects”

In 2002, a group of notable individuals from academic and industrial circles wrote a

joint technical report1 entitled: “What We Have Learned About Fighting Defects” [1].

Allow us to comment on some of the results found in this report, and, at the same

time, to associate them with related results that have been published by other—

equally notable—individuals and institutions.

 “More than half of all types of software systems enter use with defects that affect

execution.” This finding is further validated by a 2002 report2 from the National

Institute of Standards and Technology (NIST), which quantifies the business impact of

these defects by estimating their cost to the US economy to be about $59.5 billion

annually (or 0.6% of the gross domestic product) [2].

“Finding and fixing a severe software problem after delivery is often 100 times more

expensive than finding and fixing it during the requirements and design phase.” This

result is part of evidence-based Software Engineering mainstream wisdom, which

warns us about how rapidly the cost of fixing a software defect grows, as a function of

the time that elapses between the moment at which the defect is injected, and the

moment at which an observed failure unveils the existence of such defect. It turns out

that, as indicated by the NIST report: “… more than a third of these costs, or an

estimated $22.2 billion, could be eliminated by an improved testing infrastructure that

enables earlier and more effective identification and removal of software defects.”

“Assess early, assess often” as an evolution of “Test early, test often”

These two findings are summarized by the motto “test early, test often.” Unfortunately,

since the term “testing” is often associated with executing source code, organizations

that rely on traditional testing approaches, in order to detect and remove defects in

the software they develop, might miss the “early” part of the motto.

Early assessment practices can be highly effective!

This observation has led the Software Engineering community to adopt practices that

aim at assessing artifacts produced earlier in the software development lifecycle, upon

which the final software product strongly depends. These “early assessment

practices”—as we like to call them—include: inspections, reviews, audits, and

1 Let us refer to this as the “USC report”, for it is a technical report from the University of
Southern California.
2 Let us refer to this as the “NIST report”.

Exodus White Paper | Model and Quality-Driven Assessment of Software Artifacts
Email: Solutions@ExodusSoftServices.com

5

walkthroughs. Although some software development organizations do use these terms

interchangeably, they are not equivalent (see [3] for authoritative definitions of these

terms).

In connection with early assessment practices, the USC report mentions: “Reviews

catch more than half of a product’s defects regardless of the domain, level of maturity of

the organization, or lifecycle phase during which they were applied.” Moreover, if—as

proposed in the UCS report—one defines the effectiveness of early assessment

practices as the ratio between the number of defects found early, and the total

number of defects (some of which are found by testing the final product), then “a valid

heuristic is that reviews find 60-90% of defects.” This finding has been validated by

well-regarded software productivity and quality author (and practitioner) Capers

Jones, in his 2008 book [4]. Additionally, Jones points out—in a different article—that

omitting inspections is one of the top causes of planning failures that lead to project

delays or cancellations [5].

So, if early assessment practices are effective, why are they not embraced

by some software development organizations?

An IEEE Software paper published in 2007, and co-authored by two researchers

associated with the USC report, begins by quoting the 60-90% effectiveness of early

assessment practices [6], and then poses the question of why many software

development organizations—even at the light of these impressive results—either

drop inspections altogether, “cut corners” when applying them, or are simply hesitant

to include them as part of their development plans. The authors of this paper offer the

following three reasons to explain why early assessment practices have not been

embraced by some software development organizations (although measurable results

indicate they ought to).

First, there is a perceived lack of connection between the effort associated with

inspections and measurable product quality. Therefore, there should be a way of

connecting early assessment results with measurable improvements in product

quality.

Second, there is a perceived lack of customization of the adopted early assessment

practices so they align with specific software development ecosystems, which are

characterized by: (a) the people—e.g., culture, degrees of knowledge-related maturity,

and cultural diversity; (b) the processes—e.g., software process, management process,

and enterprise-wide processes; and (c) the tools that support the whole software

development lifecycle. Therefore, the adopted assessment process should be easily

and effectively adaptable to a wide variety of organizations.

Exodus White Paper | Model and Quality-Driven Assessment of Software Artifacts
Email: Solutions@ExodusSoftServices.com

6

And—finally—third, key stakeholders (e.g., developers, architects, project leaders,

and customer advocates) perceive that early assessment practices are not part of their

day-to-day tasks. In other words, these practices are perceived as a diversion from the

main business plan. Therefore, early assessment advocates need to make the

(measurably) case for the (properly customized) adoption of early assessment

practices, as part of a well-defined software process.

What we offer …

Our approach, MQDA—which stands for Model and Quality-Driven Assessment of

Software Artifacts—is an early assessment process that effectively addresses these

challenges. The next section describes MQDA’s key concepts.

Exodus White Paper | Model and Quality-Driven Assessment of Software Artifacts
Email: Solutions@ExodusSoftServices.com

7

Exodus’ MQDA—Key Concepts

MQDA is quality-driven

We would like to explain the quality-driven aspect of MQDA with the aid of a simple

example. Consider the problem of assessing the

artifacts that constitute a use case model. For the

sake of uniformity, we follow the terminology

used by two popular and authoritative references

[7, 8].

Although a use case model might be comprised of

several artifacts3, in this example we only

concentrate on two classes, namely:

 Use case diagrams, which graphically

characterize the functional behavior of a

software system by showing its use cases,

actors, and their relationships.

 Use case description documents, which

describe the interactions between actors and

use cases.

Suppose we need to assess a use case diagram.

We say the assessment is quality-driven because:

(a) Measurable quality attributes (of interest)

must be elicited and associated with the use

case diagram; and

(b) A clear and effective procedure must be

defined in order to evaluate each of the

identified quality attributes.

As a matter of illustration, one possible quality

attribute that can be associated with a use case

diagram is syntactic correctness. An excerpt of an

effective procedure that can be used to evaluate this quality attribute is defined in

Side Bar 1. This procedure is, of course, derived from the Unified Modeling Language

(UML) specification [9]. Notice that more complex conditions, not included in the

3 For instance, the following elements are mentioned in [7]: use case model summary, use case
diagrams, use case descriptions, glossary, domain model, and non-functional requirements.

Side Bar 1: Excerpt of an effective

procedure used to check the

syntactic correctness of a use case

diagram.

1. The only elements in the

diagram are: actors, use cases,

and relationships among these

elements.

2. Actors can only be of two

types: human and system.

3. Any two actors can be related

only if they are of type human

and the relationship is

generalization.

4. The only relationship between

a use case and an actor is

represented by a solid line that

connects them.

5. The only relationships between

two use cases are: include,

extend, and generalization.

6. This is left blank and two lines

like this

Exodus White Paper | Model and Quality-Driven Assessment of Software Artifacts
Email: Solutions@ExodusSoftServices.com

8

sample procedure, might involve inspecting the use case diagram in conjunction with

the associated use case documents. For instance, if the diagram shows use cases

related by the include relationship; the corresponding use case documents must

properly reflect the appropriate dependencies. This comment also applies when the

extend and generalization relationships are used.

Other quality attributes that might be relevant in certain contexts include —albeit we

do not elaborate on them in this white paper: conformance to prescribed style

guidelines, semantic correctness, and the use of prescribed use case patterns and

blueprints (see, for instance, [7] for an elaboration of these quality attributes).

MQDA is model-driven

In some cases, once a quality attribute has been associated with a software artifact, it

is convenient to create an alternative model in order to effectively (and efficiently)

evaluate such quality attribute. For instance, let us consider the example presented in

[8], which discusses the refactoring of an actual use case description document.

The original document occupies 5 pages (single-spaced, using a 9-point font), with 44

steps in the basic flow, 10 global alternative flows, and 32 alternative steps associated

with the basic flow (and a maximum depth level of 2). The refactored document

occupies 3 pages (also single-spaced, using a 9-point font), with 7 steps in the basic

flow, 1 global alternative flow, and 40 alternative steps associated with the basic flow

(and a maximum depth level of 3).

Therefore, it is reasonable to assume the refactored artifact is an example of a

medium-complexity use case description document that can be found in actual

software development scenarios.

Suppose this artifact is to be assessed according to the following quality attribute:

determine if all elicited transaction scenarios have been captured; and characterize each

of the scenarios with a logical condition (i.e., the scenario is executed if and only if the

condition holds). We agree with those who suggest that an effective way to evaluate

this attribute is by using a graph-based representation of the use case description

document (e.g., an activity diagram [9]), instead of using the document itself [10].

It is in this sense that we refer to MQDA as being model-driven.

When defining an auxiliary model M to represent a software artifact A, in order to

evaluate quality attribute Q (defined for A), we recommend following these steps:

1. Clearly specify how A is mapped to M (according to a properly derived invariant).

2. Find Q’ (defined for M), such that evaluating Q on A is equivalent to evaluating Q’

on M.

Exodus White Paper | Model and Quality-Driven Assessment of Software Artifacts
Email: Solutions@ExodusSoftServices.com

9

For the example we just discussed, the first step calls for defining how textual

elements in the use case description document map to nodes, directed edges, and

conditions in the activity diagram. The invariant to which the first step refers is, in this

case, that there must be a one to one correspondence between each transaction

scenario captured in the use case description document, and a simple path4 from the

initial to the final node in the activity diagram (a.k.a. begin-to-end path).

The second point calls for defining Q’ as finding all begin-to-end paths in the activity

diagram, and the conditions that characterize them. In general, the idea is that

computing Q’ on M should be more effective and efficient, when compared to

computing Q directly on A. There are, of course, cases for which M is A itself (i.e., there

is no need to come up with an alternative model), and therefore Q’ is Q itself.

So, in summary …

MQDA approaches the assessment of software artifacts by:

1. Defining measurable quality attributes, and effective procedures that can be used

to evaluate these quality attributes (therefore, MQDA is quality-driven).

2. Constructing auxiliary models in order to evaluate the quality attributes effectively

and efficiently, when appropriate (therefore, MQDA is model-driven).

We have illustrated the key concepts associated with MQDA by means of a simple

example. All the elements we used in the example (software artifacts, quality

attributes, effective procedures, auxiliary models, and invariants) were chosen for

illustrative purposes, and for the sake of clarity, simplicity, uniformity, and brevity.

When adapting MQDA to your organization, these elements are chosen so they align

with the strategic values of the software project at hand, your software development

ecosystem (process, people, and tools), and your business bottom line. This pertains

to how MQDA is implemented, which is discussed in the next section.

4 For the sake of simplicity, let us assume the graph is acyclic. Otherwise, the invariant and Q’
must be properly defined.

Exodus White Paper | Model and Quality-Driven Assessment of Software Artifacts
Email: Solutions@ExodusSoftServices.com

10

Implementing MQDA

The MQDA process

1. Initial Contact: Exodus representatives meet with your IT team in order to elicit

and document the software assessment needs of the organization, and its

ecosystem (people, process, and tools). IT liaisons are identified and appointed.

2. Project Proposal (which includes the adaptation of MQDA to your

organization): Exodus presents a project proposal to IT liaisons. Some of the

elements in the proposal include (but are not limited to): timeline, fixed project

cost, assessment activities (which entail working with artifacts, quality attributes,

auxiliary models, transformations to auxiliary models, assessment procedures, use

and/or development of tools, and metrics to be gathered—all of which are

specifically tailored to your organization), regular progress reports, and final

report with recommendations. Pertinent changes are incorporated into the

proposal.

3. Agile Execution of Agreed upon Project Proposal: Exodus staff works on

executing the project as per the agreed upon plan, in collaboration with the IT

liaisons. Periodic meetings with the IT team (e.g., once every week) are in place to

assess the progress of the project. These meetings allow Exodus to introduce

appropriate refinements into the agreed upon plan.

4. Findings, Recommendations, and Post-Mortem Meeting. Exodus prepares a

document for—and presents it to—the IT team, with the results, analyses, and

recommendations associated with the assessment project. When appropriate,

recommendations might lead to further professional engagements in the form of

training, coaching, and software process definition and/or refinement.

MQDA and other assessment approaches

We conceptualize the process of assessing software artifacts as the composition of the

following orthogonal axes: Verticals, Values, Logistics, and Practices. These axes are

informed by known assessment approaches including (but not limited to): Fagan

Inspection Process [11], Wiegers’ Peer Reviews [12], Gilb and Graham’s Software

Inspections [13], Parnas and Weiss’ Active Design Reviews [14], Denger and Shull’s

TAQtIC [6], the IEEE Standard for Software Reviews and Audits [3], and

recommendations put forth by Capers Jones [4, 5, 15].

The Verticals axis refers to the application domains associated with your software

development organization (e.g., banking, insurance, transportation and logistics, etc.)

The Values axis refers to issues related to human factors (e.g., not using assessment

results punitively against developers). The Logistics axis refers to issues related to

Exodus White Paper | Model and Quality-Driven Assessment of Software Artifacts
Email: Solutions@ExodusSoftServices.com

11

how assessment activities are executed from an organizational standpoint (e.g.,

defining clear roles, responsibilities, and deliverables in connection with all

assessment activities). Finally, the Practices axis refers to the actual assessment

activities that are executed (e.g., analyzing software artifacts using effective

procedures to evaluate quality attributes).

MQDA contributes to this body of knowledge in the area of Practices, by proposing an

approach based on early assessment of software artifacts through the evaluation of

measurable quality attributes, using model-based effective procedures. However, we

are cognizant of the fact assessment practices must be—in some cases—highly

specialized. A short list of examples include: evaluation of software architectures [16],

threat modeling for security assessments [17], formal methods [18], and model

checking [19].

Addressing your concerns

Connecting Early Assessment with Product Quality: After Exodus has conducted

the first two steps of the MQDA process in cooperation with the IT liaisons (i.e., Initial

Contact, and Project Proposal), our characterization of your development ecosystem

(people, process, and tools) will inform the mining of all the quality-based information

that is relevant to your organization, including: software artifacts to be assessed,

quality attributes to be evaluated, evaluation procedures to be used, auxiliary models

to be constructed, and tools that will be used and/or developed.

Customizing MQDA to your Organization: In addition to the elements mentioned in

the previous point—defined as part of our Project Proposal—other elements taken

from the four axes of well-known approaches (Verticals, Values, Logistics, and

Practices) are tailored to fit your organization’s ecosystem. For instance, in

cooperation with the IT liaisons we might adopt a medley between Fagan Inspection

Process [11] and the IEEE Standard for Software Reviews and Audits [3],

supplemented by the capturing of some of the metrics suggested by Jones [4].

Relevance of MQDA to your Business Bottom Line: A software development

organization that gets in touch with us typically belongs to one of the following

categories.

(a) The organization is aware of the direct connection between early assessment

practices, product quality, and its business bottom line. Moreover, the organization

follows a well-defined software process that includes the quantification of this

connection.

(b) The organization is aware of the direct connection between early assessment

practices, product quality, and its business bottom line. However, the organization

Exodus White Paper | Model and Quality-Driven Assessment of Software Artifacts
Email: Solutions@ExodusSoftServices.com

12

follows a software process (even if it is a de-facto process) that does not include

the quantification of this connection.

(c) The organization has an intuition that it must increase its awareness of the

connection between early assessment practices, product quality, and its business

bottom line. However, the organization needs assistance so it can initiate this

improvement process.

Regardless of the category your software organization belongs to (and even if it

belongs to a category not listed here!) we will work with you to establish, refine, and

quantify the connection between the quality of the products you produce and your

business bottom line.

Let’s talk!

Please do not hesitate to contact us for a free-of-charge, one-hour, onsite visit so we

can explore how Exodus can help your organization to assess and measure quality

aspects of your software process and products. Send us an email to

Solutions@ExodusSoftServices.com.

Exodus White Paper | Model and Quality-Driven Assessment of Software Artifacts
Email: Solutions@ExodusSoftServices.com

13

References

[1] Forrest Shull, Victor Basili, Barry Boehm, and others: “What We have Learned

About Fighting Defects”. Technical Report USC-CSE-2002-517. Center for

Systems and Software Engineering. University of Southern California.

[2] National Institute for Standards and Technology (NIST): “The Economic

Impacts of Inadequate Infrastructure for Software Testing”. Planning Report 02-

2 (May 2002).

[3] Computer Society of the Institute for Electronic and Electronic Engineers

(IEEE): “IEEE Standard for Software Reviews and Audits”. IEEE Std 1028™-2008

(August 2008).

[4] Capers Jones: “Applied Software Measurement”. Third Edition. McGraw-Hill

Osborne Media (2008). ISBN: 0071502440.

[5] Capers Jones: “Software Project Management Practices: Failure Versus Success”.

Crosstalk—The Journal of Defense Software Engineering. October 2004 issue.

[6] Christian Denger and Forrest Shull: “A Practical Approach to Quality-Driven

Inspections”. IEEE Software. March/April 2007 issue. Pages 79-86.

[7] Gunnar Övergard, and Karin Palmqvist: “Use Cases—Patterns and Blueprints”.

Addison-Wesley Professional (2005). ISBN: 0131451340.

[8] Alistair Cockburn: “Writing Effective Use Cases”. Addison-Wesley Professional

(2000). ISBN: 0201702258.

[9] Object Management Group (OMG): “UML Superstructure Specification” (version

2.4.1). Available from http://www.omg.org/spec/UML/2.4.1/Superstructure

[10] Paul Ammann, and Jeff Offutt: “Introduction to Software Testing”. Cambridge

University Press (2008). ISBN: 9780521880381.

[11] Michael Fagan: “A History of Software Inspections”. In Manfred Broy and Ernst

Denert (Editors) “Software Pioneers—Contributions to Software Engineering”.

Springer (2002). ISBN: 3540430814.

[12] Karl Wiegers: “Peer Reviews in Software”. Addison-Wesley Professional

(2001). ISBN: 0201734850.

[13] Tom Gilb, and Dorothy Graham: “Software Inspection”. Addison-Wesley

Professional (1994).

[14] D. L. Parnas, and D. M. Weiss: “Active design reviews: Principles and practices”.

Journal of Systems and Software. Volume 7, Issue 4, December 1987, Pages

259–265.

[15] Capers Jones: “Software Engineering Best Practices”. McGraw-Hill Osborne

Media (2009). ISBN: 007162161X.

Exodus White Paper | Model and Quality-Driven Assessment of Software Artifacts
Email: Solutions@ExodusSoftServices.com

14

[16] Paul Clements, Rick Kazman, and Mark Klein: “Evaluating Software

Architectures: Methods and Case Studies”. Addison-Wesley Professional (2001).

ISBN: 020170482X.

[17] Frank Swiderski, and Window Snyder: “Threat Modeling”. Microsoft Press

(2004). ISBN: 0735619913.

[18] Daniel Jackson: “Software Abstractions”. MIT Press (2006). ISBN:

9780262101141.

[19] Christel Baier, and Joost-Pieter Katoen: “Principles of Model Checking”. MIT

Press (2008). ISBN: 9780262026499.

Exodus White Paper | Model and Quality-Driven Assessment of Software Artifacts
Email: Solutions@ExodusSoftServices.com

15

About Exodus

We are a Software Engineering consulting firm constituted by highly qualified

professionals who share a passion for problem solving that requires a combination of

ingenuity and the informed use of appropriate Computing practices.

We are grateful we have been blessed with having had the opportunity of working

with diverse platforms, environments, frameworks, and software processes.

Since we are keenly aware of the importance of staying current in this our fast-paced

discipline, we continue to be actively engaged in learning from others, and sharing our

knowledge with others. We accomplish this by participating in activities such as:

publishing peer-reviewed articles, books, and chapters of books associated with well-

regarded organizations; and also by organizing/participating in professional

workshops and tutorials.

Thanks to our education and to these activities, we have been exposed to advanced

Computing concepts such as Data Structures, Algorithms, Numerical/Statistical

Analysis, Machine Learning, Data Mining, Ontologies, Service-Oriented Architectures,

Domain-Specific Languages, Computer Security, and Model-Driven Development, to

name a few.

We are always ready to—and enjoy the challenge associated with—“rolling our

sleeves up” in order to rapidly understand, apply, and extend new technologies in

order to assist you in getting your job done on time, and with the levels of quality that

you require. We also immensely enjoy combining seemingly disparate technologies,

and—excuse the cliché—thinking outside of the box.

If you feel your development team is currently stuck and/or needs a breather, get in

touch with us! Exodus Consulting will offer an exit strategy that is refreshingly

affordable, independent, timely, organic, and with the appropriate breadth and depth

that aligns with your organization’s bottom line.

Visit our website at ExodusSoftServices.com

Send us email to Solutions@ExodusSoftServices.com

T.B.T.G. 4ever

